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The vibration signals of a machine always carry the dynamic information of the machine.
These signals are very useful for the feature extraction and fault diagnosis. However, in many
cases, because these signals have very low signal-to-noise ratio (SNR), to extract feature
components becomes di$cult and the applicability of information drops down. Wavelet
analysis in an e!ective tool for signal processing and feature extraction. In this paper,
a denoising method based on wavelet analysis is applied to feature extraction for mechanical
vibration signals. This method is an advanced version of the famous &&soft-thresholding
denoising method'' proposed by Donoho and Johnstone. Based on the Morlet wavelet, the
time-frequency resolution can be adapted to di!erent signals of interest. In this paper, this
denoising method is introduced in detail. The results of the application in rolling bearing
diagnosis and gear-box diagnosis are satisfactory.

( 2000 Academic Press
1. INTRODUCTION

Vibration signals are always used for mechanical fault diagnosis, because they carry the
dynamic information of the machines. However, these vibration signals sampled on the spot
often contain a lot of noise. If the noise is too heavy, the useful information will be corrupted
such that the working state cannot be recognized or even wrong conclusions will be drawn.
Therefore, e!ective methods for feature extraction from these noisy signals should be used.

Wavelet analysis is one such powerful tool. It is especially suitable for non-stational
signal processing. In 1990s, it has been successfully used in signal processing, such as image
coding, compressing and edge detection. In the "eld of mechanical fault diagnosis, wavelet
analysis has been used in rolling bearing diagnosis [1, 2], gear-box diagnosis [2, 3] and
compressor diagnosis [4]. Wavelet has also been used for feature extraction and noise
purging, such as matching pursuits developed by Mallat and his collaborators [5, 6], and
soft-thresholding denoising developed by Donoho and Jonestone [7, 8]. The soft-
thresholding denoising employs threshold in the wavelet domain and it can be shown to be
asymptotically near optimal for many signals corrupted by additive white Gaussian noise.
However, for many mechanical dynamic signals, the feature components are composed of
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impulse components. But from some examples illustrated in section 3, this method is not
e!ective for impulse component extraction.

To make up for the de"ciency of Donoho's soft-thresholding denoising, a new denoising
method based on Morlet wavelet is proposed in this paper, especially applicable to impulse
components extraction. One application in mechanical fault diagnosis is introduced in this
paper. The remaining parts are organized as follows. In section 2, the concept of wavelet is
introduced and the review of wavelet transform is given. In section 3, the calculation for
continuous wavelet transform of Morlet wavelet is given, which includes the discretization
of scale parameter a and translation parameter b, and the optimization of parameter b that
controls the time}frequency resolution of Morlet wavelet. A denoising method based on
continous wavelet transform of Morlet wavelet is also established. In section 4, the
denoising method is applied to rolling bearing diagnosis and gear-box diagnosis. The
conclusion of this paper is given in section 5.

2. REVIEW OF WAVELET TRANSFORM

Wavelet transforms are inner products of the signal and a family of the wavelets. Let t(t)
be the mother wavelet or the wavelet &&prototype''. The corresponding family of wavelets
consists of a series of son wavelets, which are generated by dilation and translation from the
mother wavelet t(t) shown as follows:

t
a,b

(t)"DaD1@2tA
t!b

a B , (1)

where a is scale factor and b is time location: the factor DaD~1@2 is used to ensure energy
preservation.

The wavelet transform of signal x(t) is de"ned as the inner product in the Hilbert space of
the ¸2 norm as follows:
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Here the asterisk stands for complex conjugate. Time parameter a and scale parameter
b vary continuously. Mother wavelet t(t) is assumed to lie in ¸2(C) and satis"es the
admissibility condition

Ct"P
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where ¸2(C) is the space of square integrable complex functions, and

t) (u)"Pt (t) exp (!jut) dt. (4)

The wavelet transform=(a, b) can be considered as functions of translation b with each
"xed scale a.=(a, b) gives the information of x(t) at di!erent levels of resolution and also
measures the similarity between the signal x(t) and each son wavelet t

a,b
(t) (=(a, b) is the

convolution between x(t) and the wavelet function). This implies that a wavelet can be used
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for feature discovery if the wavelet used is similar to the feature components hidden in the
signal.

The wavelet transform introduced above is also called continuous wavelet transform
(CWT). Before the calculation, the relevant parameters must be discretized for being
computed by a computer. Dyadic discretization is the most popular method. In this
method, a"2j, b"k2j, j, k3Z. It has fast algorithms, of which the famous Mallat
algorithm is an example. Although this method saves a lot of computation time, it has three
disadvantages making it unsuitable for feature extraction. First, it demands that the wavelet
must be orthogonal. This restriction makes it rather di$cult to "nd a proper wavelet for
feature extraction. Second, the sampling grids in the time-scale plane are rather sparse.
Usually, feature components cannot be separated from the irrelevant components by these
sparse grids. Third, time invariant is very important for feature detection, while this
algorithm does not meet requirement [9]. Thus, the dyadic discrete wavelet transform is not
suitable for feature extraction. In the following section, CWT is introduced as a better
method.

3. EXPLOITATION OF THE FEATURE EXTRACTION USING CWT

The scale parameter a and translation parameter b of CWT vary continuously. For
convenience of calculation, they have to be discretized "rstly. The details are given as
follows.

3.1. PARAMETERS OPTIMIZATION

As stated in section 2, the basic wavelet in CWT may not be orthogonal, any one
satisfying the admissible condition can be used as a basic wavelet. Thus, to "nd a proper
wavelet function for feature extraction is simple. In this paper, Morlet wavelet is used,
because in many mechanical dynamical signals, impulses are always the symptoms of faults
and the Morlet wavelet is very similar to impulse component. A Morlet wavelet is de"ned as

t(t)"exp (!b2t2/2) cos (nt). (5)

By dilation with a and translation with b, a son wavelet can be acquired. As shown in
equation (6)

t
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Obviously, it is a cosine signal decaying exponentially on both sides. Figure 1 illustrates
the shape of a Morlet wavelet, which appears as an impulse.

There are three parameters in a son Morlet wavelet altogether: a, b and b. We shall
discuss the selection of a and b "rst. Di!erent de"nition domains of a and b correspond to
di!erent segmentations of the time-scale plane of CWT. For a given digital signal, the
sampling rate always follows the Nyquist sampling theory, generally the sampling rate can
be considered high enough. Then it will have enough time resolution if the translation unit
is equal to the sampling period. That is, the length of the time-scale grid along the time axis
is equal to the sampling period. The length of the time-scale grid along the scale axis
depends on the distribution and resolution of the feature components. Hence it may be
di!erent in various cases.



Figure 1. The shape of Morlet wavelet.
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Then, there is only one parameter b left. From equation (5), it can be seen that parameter
b controls the shape of the basic wavelet. Parameter b balances the time resolution and the
frequency resolution of the Morlet wavelet. Decreasing b will increase the frequency
resolution but it decreases the time resolution. When b tends to 0, the Morlet wavelet
becomes a cosine function which has the "nest frequency resolution, and when b tends to
in"nity, the Morlet wavelet becomes a Dirac function which has the "nest time resolution.
So, there always exists an optimal b that has the best time}frequency resolution for a certain
signal localized in the time-frequency plane.

As for the wavelet base optimization, &&sparsity'' is usually used as the rule for evaluating
the wavelet base. This means that the wavelet corresponding to the fewest wavelet
transformation coe$cients of a signal is the best. Therefore, the value of b can be
determined according to whose wavelet coe$cients are the sparsest. As we know, the
diversity of a possibility series can be measured with Shannon Entropy. Thus, sparsity of
wavelet coe$cients may be measured with the entropy of those wavelet coe$cients. The
entropy here is termed wavelet entropy. Assume that Mc
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The wavelet entropy is calculated by
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i
. (8)

A simulated signal is given to verify the validity of the wavelet entropy. The formula of the
signal is de"ned as

f (t)"exp [!(t!400)2/200] cos [n(t!400)/5]



Figure 2. The waveform of the simulated signal.

Figure 3. The relation curve between b and the wavelet entropy.
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#exp [!(t!425)2/600] cos [n(t!425)/7)2]

#exp [!(t!440)2/400] cos [n(t!440)/5)3]. (9)

The sampling rate of t is 1 and the "rst 1000 points are illustrated in Figure 2. Increasing
b from 0)1 to 20 and calculating the wavelet entropy of the coe$cients, the relationship
between b and wavelet entropy is obtained, as shown in Figure 3. There exists a minimal
value of wavelet entropy when b"0)6, then 0)6 is the optimal value of b.

The CWT of the simulated signal is calculated, respectively, taking b as 0)2, 0)6 and 1)2, as
shown in Figures 4(a)}4(c). From formula (9) it can be seen that the signal includes three
close impulse components. For the sake of application in this paper, the CWT
corresponding to the optimal value of b should separate the three parts e!ectively. From the
Figures 4(a)}4(c), it can be seen that the CWT corresponding to b"0)6 divides the signal



Figure 4(a). CWT of the signal when b"0)2; (b) CWT of the signal when b"0)6; (c) CWT of the signal when
b"1)2.
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into three parts, the CWT with b"0)2 divides the signal into two parts along the scale axis
and the CWT with b"1)2 divides the signal into two parts along the time axis. So the
method based on wavelet entropy is very e!ective for the selection of the wavelet bases.

3.2. FEATURE EXTRACTION USING MORLET CONTINUOUS WAVELET TRANSFORM

Although CWT brings about a lot of redundancy in the representation of the signal (a
one-dimensional signal is mapped to a two-dimensional signal), it provides the possibility to
reconstruct this signal. A classical inversion formula is

x(t)"C~1t PP=(a, b)t
a,b

(t)
da

a2
db. (10)

Another simple inverse way is to use Morlet's formula, which only requires a single
integration. The formula is [10, 11]
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where
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If all of the wavelet coe$cients=(a, b) corresponding to the feature components can be
acquired, the puri"ed signal can be obtained only by reconstructing these coe$cients using
the formula (11).

Here the principle of &&soft-thresholding denoising'' is introduced which was produced by
Donoho and Johnstone [7, 8]. It provides a method on how to remove the irrelevant parts
in the wavelet coe$cients. The details of the method can be found in reference [7]. In this
method, dyadic discrete orthogonal wavelet transform is used. Assuming that the
background noise is additive Gaussian white noise, the wavelet coe$cients caused by the
noise are still the same independent distribution after the transform. The variance of the
distribution depends on the variance of the Gaussian white noise and the number of the
data according to the inference of Donoho [7]. Therefore, di!erent thresholds may be used
for the wavelet coe$cients according to di!erent demands for the risk. But this method has
two disadvantages. First, the basic wavelet must be orthogonal. Usually, it is not similar to
the feature components. Second, the background noise may not be Gaussian white noise.
More generally, if all of their relevant components are considered as the noise needs to be
removed, the puri"ed signal obtained by this method will probably not be the true feature
components.

These two de"ciencies can be overcome by taking Morlet continuous wavelet transform
instead of dyadic discrete wavelet transform. Wavelet coe$cients measure the similarity
between the signal and each of its son wavelets. The more the son wavelet is similar to
feature component, the larger is the corresponding wavelet coe$cient. So if the signal is
transformed by the Morlet wavelet, those large wavelet coe$cients are mainly caused by the
impulse components contained in the signal. Reconstructing those large coe$cients, the
impulse components in the signal are obtained. Then, a threshold must be selected in order
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to obtain those large coe$cients. The value of the threshold depends on the SNR of the
signal. The greater the SNR, the lower the value. The theoretic instruction for the selection
of the value of the threshold remains an open question.

The calculation of this denoising method can be summarized in the following steps:
(a) Performing discrete wavelet transform

=(a, b)"
1

Ja

N
+
k/1

x(k)t*A
k!b

a B, (13)

where N is the data length.
(b) Processing the coe.cients using thresholding. In this step, it is attempted to remove

the components caused by noise. One method termed as &&soft-thresholding'' is used in
Donoho's denoising method. It is an advanced version of the so-called &&hard-thresholding''
[7]. The &&soft-thresholding'' can be expressed in the following formula:

y
s
"G

sgn(y) DyD!t,

0,

DyD't,

DyD(t.
(14)

where, sgn ( ) is the sign function, and t is the threshold. But when the SNR is so low that the
threshold is beyond the half of the largest coe$cient, all of the coe$cients will be set to zero
by this rule. To overcome this de"ciency, a new way termed &&generalized soft-thresholding''
is established. It can be expressed by the following formula:

yg"G
sgn (y) ( Dy D!at)

0,

DyD't,

DyD(t.
(15)

where a is constant and 0)a)1. When a"0, it becomes &&hard-thresholding'', and when
a"1, it becomes &&soft-thresholding''.

(c) Reconstructing the revised coe.cients. Let =@(a, b) be the revised coe$cients. The
puri"ed signal can then be obtained using the following formula:

s (k)"
1

C
1t

+
A

=@(a,k)a~3@2, (16)

where A is the de"nition domain of scale a.
It will be found that the method for noise canceling is more e!ective than Donoho's
&&soft-thresholding denoising'' by two examples. Figures 5(a) and 5(b) are two simulated
impulse signals with di!erent decaying rates, and Figures 6(a) and 6(b) are the two signals
with additive white noise. Then, using Donoho's method and the method introduced above,
respectively, the puri"ed signals were obtained, as shown in Figures 7(a), 7(b) and 8(a), 8(b).
Obviously, the results from the denoising method based on Morlet wavelet is much better
than those of Donoho's.

It should be pointed out that the parameter b of the Morlet wavelet may change in
di!erent cases. The optimal value of b can be obtained by the minimal entropy method
introduced in section 2. Two examples illustrated in Figure 8 come from the denoising
method based on a Morlet wavelet with di!erent values of b. Figure 8(a) corresponds to
b"0)3, and Figure 8(b) corresponds to b"3.



Figure 5. Two simulated impulse signals.

Figure 6. The two simulated signals with additive white noise.
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4. MECHANICAL FAULT DIAGNOSIS USING THE DENOISING METHOD BASED
ON MORLET WAVELET

For many mechanical dynamic signals, impulses usually indicate the occurrence of faults.
In these cases, the impulses are covered by heavy background noise. Therefore, it is very



Figure 7. The puri"ed signals obtained by Donoho's denoising method.

Figure 8. The puri"ed signals obtained by the denoising method based on Morlet wavelet.
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important to remove the noise or extract the feature components for following diagnosis. In
the "eld of mechanical engineering, diagnosis for rolling bearings, gear boxes and
reciprocating machines are especially di$cult, because their vibration and acoustic signals
often have low SNR. It will be very helpful to diagnose these machines when an e!ective
method for feature extraction is used. As stated above, a Morlet wavelet can be used for
extracting impulse components. The reason is that a Morlet wavelet is more similar to an
impulse. Besides, parameter b of a Morlet wavelet can be adjusted to adapt to those
impulses with any decaying rate. For Fourier transformation, the base is e~+ut. The real and
the imaginary parts are both triangular functions that are not impulses. Those feature
components cannot be revealed using Fourier transformation. In the following, two
examples are given to show how the denoising method based on Morlet wavelet is applied
to mechanical fault diagnosis.

4.1. DIAGNOSIS FOR A ROLLING BEARING

Rolling bearings are installed in many kinds of machinery. A lot of problems of those
machines may be caused by rolling bearings. Generally, local defects occur on outer-race,
inner-race or rollers of bearings. When the rollers pass through the defect, an impulse may
appear. According to the period of the impulse, we can judge the location of the defect using



Figure 9. The vibration signal of an inner-race damaged rolling bearing. (a) The original vibration signal; (b) the
puri"ed signal obtained by Donoho's denoising method; (c) the puri"ed signal obtained by the denoising method
based on Morlet wavelet.
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characteristic frequency formulae [1]. Because inner-race damage have more transfer
segments when transmitting the impulse to the outer surface of the case, usually the impulse
components are rather weak in the vibration signal. Thus, diagnosis for inner-race damage
is very di$cult. The rolling bearing tested has a pit on inner-race. The speed of the spindle is
2000 r.p.m., that is, the rotating frequency f"33)3 Hz. There are eight rollers in a bearing
and the contact angle a"0, roller diameter d"15 mm, bearing pitch diameter E"65 mm,
and the number of the roller z"8. The characteristic frequency of the inner-race damage
can be calculated by the formula.

f
i
"0)5zA1#

d

E
cos aB f. (17)

Using the formula, the characteristic frequency for inner-race damage is calculated to be at
164 Hz. That is, the characteristic impulse period is 0)0061 s for inner-race damage.

Figures 9(a)}9(c) illustrate the three pictures of an inner-race damaged rolling bearing.
The signal is acquired by an accelerometer mounted on the case of the bearing. It is sampled
at 40 kHz with a 15 kHz "lter in advance. We can hardly "nd any periodic impulses in the
original signal. Even after Donoho's &&soft-thresholding denoising'' has been used to process
the signal, the periodic impulses do not appear. Here the denoising method based on Morlet
wavelet is used, the periodic impulses appear clearly, as shown in Figure 9(c). In this case,
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b"0)9. The period is just about 0)006 s, which is in accordance with the characteristic
frequency for the inner-race damaged rolling bearing.

4.2. DIAGNOSIS FOR A GEAR BOX

Gear boxes are very popular in industrial applications. A broken gear tooth failure may
cause many fatal accidents, so the recognition of gear tooth cracks is very important for the
safety of a gear box. They can be avoided by catching the early symptoms. Signals of a gear
box are always noisy, and so it remains di$cult to detect gear tooth crack e!ectively.

The following example concerns the life test of an automobile transmission box shown in
Figure 10. Its transmission path is shown as follows:

inputPA
Z28

Z48BPA
Z20

Z44BPA
Z30

Z36BPA
Z15

Z42BP output.

In order to detect the gear tooth crack, many signal processing methods, such as zoom
FFT cepstrum analysis, Hilbert transformation, etc., have been recommended. But the
results are not very e!ective.

In this paper, the signal was acquired by an accelerometer mounted on the outer case of
a gear box. It was sampled at 5 kHz with a 2 kHz low-pass "lter in advance. Because of its
long transmission path and multi-sources of excitation, the picked-up vibration signal was
very complex. The vibration signal was picked up before the tooth was broken near the end
of the life test.

The rotating speed of the input shaft was 1600 r/min, i.e., 26)67 Hz, and the rotating
frequency of the output shaft was 2)1 Hz. The fault gear was the 42-tooth-gear on the output
shaft. The cracks happened in two symmetrical teeth. Therefore, the signal in this case
should include the impulse components whose period equals 0)24 s.

Figure 11(a) is the waveform of the transmission box. We cannot "nd any periodic
impulses in it. Figure 11(b) is the puri"ed signal obtained by the denoising method based on
Morlet wavelet. Figure 11(c) is the puri"ed signal obtained by Donoho's method. Periodic
impulses appear in Figure 11(b). It can be easily found that the period is around 0)24 s. Thus,
Figure 10. The transmitting routine of the automobile transmission box.



Figure 11. The vibrational signal of a gear box. (a) The original vibration signal of a gear box; (b) the puri"ed
signal obtained by the denoising based on Morlet wavelet; (c) the puri"ed signal obtained by Donoho's method.
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it can be judged by this puri"ed signal that the tooth crack failure has happened. In this
case, b"1)8.

From these two examples it can be seen that the denoising method based on Morlet
wavelet is very e!ective for feature extraction. Although the impulses in the signal of roll
bearing and those in the signal of gear box are di!erent, they still can be extracted by this
method. And though Donoho's &&soft-thresholding denoising'' has a lot of excellent
mathematic attributes, it does not behave well in feature extraction for mechanical dynamic
signals.

5. CONCLUSION

In the process of feature extraction, it is required that the time-scale structure of a wavelet
should be consistent with the feature components. For a Morlet wavelet, its time and
frequency resolution can be altered by adjusting the value of b. The optimal value of b can
be obtained using minimal wavelet entropy method, In this paper, one denoising method
based on Morlet method is proposed. It uses Morlet wavelet as the basic wavelet and
compromises its time resolution and frequency resolution by adjusting the value of b to
adapt to di!erent signals. Having been tested using two simulated signals, it can be seen that
this denoising method is more e!ective than Donoho's &&soft-thresholding denoising''
method. In this paper, this method is also applied to mechanical fault diagnosis*feature
extraction from the signals of rolling bearings and a gear box. Among the "nal extracted
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features, it can be seen that the feature components, periodic impulses are very clear. In
other words, the information immersed in the noise has been extracted completely.
However, Donoho's &&soft-thresholding denoising'' method does not behave well in these
two applications. Therefore, this denoising method based on Morlet wavelet has more
advantages than Donoho's &&soft-thresholding denoising''method in feature extraction from
these impulse signals. It is a stronger tool for feature extraction and mechanical fault
diagnosis.
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